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Abstract
A method to apply an empirical feature track correction (FTC) in a new obser-
vation operator for atmospheric motion vectors (AMVs) is proposed. The FTC
AMV observation operator determines the background estimate of the observed
AMV vector wind, adjusting the background profile by determining an opti-
mal height adjustment, averaging the profile over a layer of optimal thickness,
and applying a linear correction to the averaged profile wind. The FTC obser-
vation operator is tested in the context of a collocation study between AMVs
projected onto the collocated Aeolus horizontal line-of-sight (HLOS) and the
Aeolus HLOS wind profiles. This study is a prototype for a variational FTC for
numerical weather prediction data assimilation systems in which the Aeolus
wind profiles take the place of the background in the FTC observation opera-
tor. Compared to a collocation where the Aeolus profile is interpolated linearly
in height to the AMV height, a simple ad hoc averaging approach and the FTC
approach reduce the mean square difference between the AMV observation and
the Aeolus estimated AMV observation by 38% and 43%, respectively.
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1 INTRODUCTION

The need for high-quality wind observations documented
by the NRC (2007) remains valid. This need has been
the motivation for many proposed space-based Doppler
wind lidar (DWL) missions (Baker et al., 2014). Since
2018 the Aeolus mission has made this a reality (Stoffe-
len et al., 2005; Rennie et al., 2021). Note that Rennie et al.
(2021) give a very useful and detailed description of the
Aeolus data processing and observation characteristics.

On the other hand, for decades there have been plentiful
atmospheric motion vectors (AMVs) created by tracking
features in imagery from a variety of platforms and centres
(Key et al., 2003; Velden et al., 2005; Santek et al., 2019a).
AMVs include any type of feature-tracked wind including
cloud track winds (CTWs) as well as so-called 3D winds
created by tracking features in retrieved humidity imagery
(Santek et al., 2019b). Several million AMVs are produced
daily in centres around the world. However, AMVs have
complex error characteristics – often attributed to height
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assignment errors – which hinder their use in data assimi-
lation (DA) for numerical weather prediction (NWP) (e.g.,
Rao et al., 2002; Velden and Bedka, 2009; Salonen et al.,
2015; Lee and Song, 2017; Cordoba et al., 2017), and only a
tiny fraction are used for that purpose.

A variational DA system makes use of all information
presented to it, including all observations, the model fore-
cast, and a priori constraints. With an appropriate bias
model, a DA system can also predict and thus mitigate
the effects of observational error bias by estimating the
coefficients in the bias model as auxiliary parameters in
the overall minimization. In what follows we describe a
feature track correction (FTC) observation operator for
AMVs that includes such a bias model. The variational
bias correction (VarBC) for radiances (Zhu et al., 2014), is
an example of a very successful bias correction scheme.
VarBC uses a number of predictors to estimate and correct
the biases of individual channels and sensors, within the
variational minimization. These corrections include lin-
ear and quadratic terms for predictors such as lapse rate
and incidence angle. It is critical in VarBC that there is a
sufficient number of unbiased observations that serve to
anchor the analysis. In the same way that global navigation
satellite system radio occultation (GNSS/RO) observations
have provided a source of highly accurate observations,
which are necessary to make VarBC of radiances success-
ful, it had been anticipated that space-based DWL winds
would do the same for AMVs, provided that the DWL
observations are very accurate and bias-free. The parallels
would be striking: GNSS/RO and DWL observations have
global but sparse coverage, are (or should be) extremely
accurate, and have high vertical resolution. Unfortunately,
the Aeolus DWL observations have larger than anticipated
random error and noticeable biases, which so far have
only been corrected via comparison with a NWP system
(Weiler et al., 2021), and so cannot be considered anchor-
ing observations. In any case, variational FTC (VarFTC)
would, like VarBC, take into account all observations used
by the DA system, including wind anchoring observations
from radiosonde and aircraft reports and (hopefully one
day) DWL observations.

The quality of recent and current Aeolus wind products
is still under study, but recent published results (e.g., Baars
et al., 2020) are encouraging. As significant efforts have
been made in terms of additional calibration and enhance-
ments to the Aeolus processing system, the resulting data
stream may eventually prove suitable to act as high-quality
anchoring observations for AMV VarFTC. Furthermore,
comparisons to AMVs are valuable, because Aeolus mea-
surements should not have a height assignment error, but
rather are directly related to an observing level. (In our
discussion we refer to the Aeolus making observations at
levels, but it should be kept in mind that these are really

the mid-levels of the Aeolus observing volumes, which
range from 0.5 to 1.0 to 2.0 km in thickness as elevation
increases.) Therefore, in this study we prototype and test
an FTC for AMVs that compares AMVs projected onto the
Aeolus horizontal line-of-sight (HLOS) to the correspond-
ing Aeolus HLOS wind profiles.

Both radiances and AMVs are imperfectly calibrated
and have horizontally correlated errors (Bormann et al.,
2003; Le Marshall et al., 2004; Cordoba et al., 2017; Lee
and Song, 2017) based on geophysical variables not prop-
erly accounted for. In the case of AMVs, it is expected that
the errors depend on a number of factors including track-
ing algorithm, cloud type, height assignment algorithm,
and the channel used (visible, infrared, water vapour).
There are notable differences in the observation func-
tions and form of the bias correction for radiances and
AMVs (Bormann et al., 2014; Hernandez-Carrascal and
Bormann, 2014). First, it is thought that the most criti-
cal bias of AMVs is due to height assignment errors; e.g.,
Folger and Weissmann (2016). Further, Salonen and Bor-
mann (2013) and Salonen et al. (2015) note that height
assignment errors are the main source of errors in AMVs.
This will entail the correction of the coordinate, not the
value of the observation. Second, AMVs undoubtedly have
additional wind speed biases once height assignments are
corrected. Bresky et al. (2012) discuss the slow speed bias
of some AMVs. Third, AMVs are representative of a layer
of the atmosphere and not the cloud top. An estimate of
the layer depth may help to correct biases. It is possible
that the cloud motion is representative of an atmospheric
layer different from the cloud layer. For clear water vapour
AMVs the thickness of the layer is expected to be related
to the width of the layer contributing to the radiance of the
channel used. In either case (CTWs or clear-sky AMVs),
the weighting through the representative layer may not
be (is probably not) uniform. The method presented here
could make use of any known weighting function, or even
estimate such a weighting function, which would likely
depend on cloud type in the case of CTWs (Hasler et al.,
1977).

There are several important limitations of the colloca-
tion dataset used here. First, of the four modes of Aeolus
operation, only the Rayleigh clear observations are used.
The Aeolus project recommends that Rayleigh cloudy and
Mie clear observations should not be used. Since the objec-
tive of the FTC observation operator is to compare wind
profile data to AMVs, the Aeolus Rayleigh clear obser-
vations, which provide continuous vertical profiles, are
appropriate to use here while the Mie cloudy observations,
which are few and scattered in the vertical, are not. This
is clear from the curtain plot of Aeolus L2B HLOS vec-
tor wind observations for one orbit depicted in Figure 1 of
Rennie et al. (2021). However the Mie winds are known
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to be more accurate than the Rayleigh winds. Further,
we are comparing Aeolus observations in clear scenes to
nearby AMVs, which except for clear water vapour AMVs
are necessarily from cloudy scenes. Both of these effects
are expected to increase the difference between the collo-
cated Aeolus and AMV observations. While it is possible
to combine Mie and Rayleigh winds in one profile, we
have not done this since it would result in an inhomo-
geneous collocation dataset due to differences in error
characteristics between levels within a single profile and
between pure Rayleigh and mixed Mie–Rayleigh profiles.
(Of course, both types of Aeolus winds would be used quite
naturally within a VarFTC implementation.) Second, the
Aeolus data are known to have some biases even after the
M1 mirror temperature bias correction (Weiler et al., 2021).
Third, Aeolus is in a polar twilight orbit, with all observa-
tions near dawn or dusk. Additional AMV limitations are
discussed by Lukens et al. (2021) who further analyze and
discuss the collocation dataset used here. In spite of the
limitations of the current study, we suggest that the FTC
approach for AMVs has potential for improving (a) collo-
cation studies comparing AMVs with wind profiles from
various sources, (b) understanding of AMVs and the char-
acterization of their errors, and (c) the use of AMVs in DA
and NWP.

2 THE FTC OBSERVATION
OPERATOR

The FTC AMV observation operator determines the back-
ground estimate (V̂) of the observed AMV vector wind,
adjusting the background profile by determining an opti-
mal height adjustment, averaging the profile over a layer of
optimal thickness, and applying a linear correction to the
averaged profile wind. We note at the outset that estimat-
ing these different sources of AMV biases simultaneously
may produce ambiguous results. For example, in the case
of AMVs that are too slow, the FTC could reduce the mis-
match with a constant correction, with a multiplicative
factor, by shifting the height, or by changing the layer aver-
aged over. The last two adjustments are possible because of
the general increase of wind speed with height. Restricting
the degrees of freedom in the general formulation of FTC
may be appropriate in different settings.

The general form of the FTC observation operator is

V̂ = ∫ w(z)V(z) dz + 𝛿V, (1)

where w(z) is the vertical weighting function and 𝛿V is
an additive correction. Vector wind (V) may be in terms
of components (u, v; m⋅s−1) or some other representation.

Height (z) may be any vertical coordinate, but in this
study will be geometric height (km) relative to the reported
height of the AMV. Positive values of z correspond to levels
above the AMV. Note that, except for 𝛿V, all the adjust-
ments made by the FTC observation operator are related
to a vertical weighting function w(z). The weights w(z) will
usually be non-zero only near the reported height of the
AMV, i.e., for small |z|. It is useful to normalize w(z) so that
the integral corresponds to a weighted average of V. Then
Equation (1) may be written as

V̂ = 𝛾V + 𝛿V, (2)

where
V = ∫ w(z)V(z) dz

/
∫ w(z) dz, (3)

and
𝛾 = ∫ w(z) dz. (4)

Note that in Equation (2) the estimated AMV wind, V̂,
is a linear function of V, the weighted average of the
background wind.

The case where w(z) is a boxcar shape corresponds to
V being a simple average over the boxcar layer. In this
case, the free parameters are Δz, the width of the boxcar
(i.e., the thickness of the averaging layer), h, the midpoint
of the averaging layer with respect to the reported height
of the AMV, 𝛾 , the height of the boxcar (i.e., the multi-
plicative correction term), and 𝛿V, the additive constant
correction term. In the present study, V is the HLOS vec-
tor wind (HLOSV), and 𝛿V is a scalar. Different shapes
could be specified for w(z) such as triangular or trape-
zoidal. More complicated schemes would determine the
shape of w(z), but might require some constraints on w(z).
The correction parameters may depend on several factors,
such as AMV type, location (i.e., latitude and pressure),
and other predictors evaluated from the background. For
example, the averaging layer might be smaller for window
channel infrared (IR) CTW AMVs compared to that for
hyperspectral clear-sky water vapour (WV) AMVs.

3 IMPLEMENTING THE FTC
OBSERVATION OPERATOR IN A
VARIATIONAL DATA
ASSIMILATION

FTC could be implemented in a variational DA system in
a manner similar to VarBC. In such an implementation,
which we will call VarFTC, the FTC parameters would be
optimized at the same time as the DA minimizes the misfit
between V̂ and the observations. In such a scheme, the
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normal control vector is augmented with the FTC param-
eters and the FTC observation operator replaces the nor-
mal AMV observation operator. An additional constraint
cost function would add prior information about the FTC
parameters – 𝛿V and either wk or (h,Δz, 𝛾). The VarFTC
constraint cost function might parallel that for VarBC for
radiances. In the VarBC, the constraint cost function is
a sum of squares of the differences between the VarBC
predictor coefficients and an a priori estimate of those
coefficients, taken to be the solution from the previous
DA cycle. However, note that VarBC is usually formulated
as an additive correction to the radiance observations,
whereas VarFTC reformulates the observation operator
for AMVs.

The VarFTC observation cost function for AMVs,
under the assumption that there are no correlated obser-
vation errors, is

Jo =
∑

i

(
Vo

i − V̂i

𝜎o
i

)2

(5)

where Vo
i is the observation, V̂i is the VarFTC observation

operator estimate, and 𝜎o
i is the estimated “observation

error” standard deviation, all for the ith AMV observation.
In practice 𝜎o should include contributions from instru-
ment and representativeness errors, as well as from errors
of the observation operator. Within an operational DA sys-
tem, VarFTC should use the existing estimates of AMV 𝜎o

adjusted by a multiplicative factor to reflect the smaller
variance of the observation minus background innovations
due to using the FTC observation operator.

When implementing the FTC observation operator in
a variational data assimilation it should be noted that:

• Nothing in this formulation specifically addresses spa-
tial correlations of AMVs. This is easy to add formally to
Equation (5), but it is difficult in practice to estimate the
necessary correlations. In fact, an implicit assumption
is that these correlations are caused in large part by
the biases and height assignment issues that VarFTC is
designed to remove.

• The use of an adjustable height correction and aver-
aging interval in the VarFTC procedure is expected to
handle the discrepancies that exist in a standard VarBC
for AMVs due to the fact that AMVs may be representa-
tive of a layer in the atmosphere, not necessarily centred
on the cloud top for CTWs or the height of the weighting
function for WV AMVs.

• VarFTC mixes in some of the model biases with the
corrections determined by the method. It may be possi-
ble to separate the overall correction into components
which depend on AMV type or data provider and a

remainder. Model biases should only be present in the
remainder.

For VarFTC, a number of DA system implementation
issues and mitigations must be considered. First, the ini-
tial proposed observation operator (Equation (2)) would
be difficult to linearize, and therefore might not preserve
the convergence properties of the DA optimization inner
loop. However, we can separate the FTC observation oper-
ator within a variational DA as follows. First, the outer
loop determines all the FTC free parameters as an inde-
pendent optimization. This would be handled at the same
level as any QC decisions. During the inner loop, the stan-
dard AMV cost function is replaced by Equation (5), the
parameters defining the averaging layer – Δz and h – are
held fixed, and the other parameters – 𝛾 and 𝛿V in the case
of boxcar weighting – are optimized in what is essentially
just a linear least-squares problem. In both the inner and
outer loop it is possible to add quadratic constraints on the
difference between the parameters and an a priori estimate
of the parameters. Second, additional variables which pro-
vide a significant improvement in fit could be included
in an implementation of the FTC observation operator.
Some variables such as shear and wind speed that might be
included as predictors could instead be used to subset the
sample. If region or height are used as subsetting variables
to divide up the domain, this might create discontinuities
in the resulting analysis. In VarBC this is handled with
interpolation of the fit coefficients. For example, the Trop-
ics and Northern Hemisphere Extratropics solutions might
be interpolated in the latitude band 25◦–35◦N. However,
this cannot be done for the parameters defining the averag-
ing layer – Δz and h – if these only take on discrete values.
Instead the observation operator can be written in terms
of w(z) (Equation (1)), and w(z) can be extended with zero
values to all vertical levels outside any particular averag-
ing layer. In this form the observation operator is linear in
w(z) and 𝛿V and these parameters can be interpolated or
averaged as needed even as the averaging layer changes.
Alternatively, one could calculate the observation opera-
tor for all possible regions and interpolate those results
linearly in latitude or height as needed.

4 A COLLOCATION STUDY WITH
AEOLUS HLOS WINDS

We apply the FTC formulation described in Section 2
(and in the Appendix) with the HLOS winds from Aeo-
lus providing the background profiles and the AMV winds
projected onto the collocated Aeolus HLOS as the obser-
vations. Results presented depend on the error character-
istics of the Aeolus data and should not be considered
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T A B L E 1 List of models tested

Model DOF Description

lmn 3 + n General linear model which allows for an arbitrary layer for vertical averaging (specified by
Δz and h) and applies linear regression (to determine wk and 𝛿V) using n levels from the
wind profile as the predictors.

lm1 4 Standard linear model which allows for an arbitrary layer for vertical averaging (specified
by Δz and h) and uses linear regression (to determine 𝛾 and 𝛿V) using the average wind as
the predictor.

lm1+0 3 Standard linear model with a zero constant term (i.e., 𝛿V = 0).

lm0 3 Standard linear model but holding 𝛾 = 1.

AHA 1 Ad hoc averaging over a layer of thickness Δz centred on the observation.

OLS 2 Ordinary least squares with predictor V0.

LSO 1 Least squares through the origin with predictor V0.

SBC 1 Simple bias correction to be added to V0.

Null 0 Null model which is just equal to V0.

Note: The number of free parameters is given in the column labelled ‘DOF’ for degrees of freedom. The profile interpolated to the height
of the observation is denoted V0. Mathematical formulations are given in the Appendix.

representative of the potential performance of VarFTC in
an NWP DA system because in the collocation study the
FTC observation operator must account for errors in both
the AMVs and the Aeolus observations. As we will see, this
complicates the interpretation of the results because of the
Aeolus observation error characteristics.

Ten days of data are used. The Aeolus profile is interpo-
lated to a regular 0.5 km vertical grid relative to the AMV
height. The method of solution is to minimize the mean
squared observation minus background (OMB) difference,
with respect to the free parameters. The minimization is
only constrained by the data fit. Since this mean squared
difference (MSD) is equal to the sum of squared OMB dif-
ferences divided by the sample size, minimizing the OMB
MSD is equivalent to minimizing Jo in Equation (5) with
𝜎o set to one. We felt that the neglect of variations in 𝜎o was
justified in the collocation study, especially where we opti-
mize separately for a number of subsets within which the
𝜎o are fairly uniform. However, we did find that variance
of OMB does increase with AMV wind speed and with the
magnitude of Aeolus HLOS wind shear.

The preliminary steps of our analysis described in
the following subsections are data acquisition, data col-
location, quality control (QC), and data pre-processing.
Collocations passing QC (the QC sample in what follows)
are divided into two samples – one for training and one
for independent verification (the training sample and
independent sample in what follows). Then solutions are
compared for a range of linear and ad hoc models with
varying numbers of free parameters as listed in Table 1.
Finally, a number of different stratifications of the dataset
are used to explore the dependence of FTC solutions on

AMV type, height, geographic region, wind speed, and
wind shear. Results for the training and independent
samples are very similar, and (with the exception of the
discussion of Figure 2 in Section 4.5) only the results for
the independent sample are shown or discussed.

The key metrics reported below are the OMB RMSD
and the coefficient of determination (CoD). Both are
related to the goodness of fit and the OMB MSD objective
function that is minimized. The CoD is the reduction in
MSD with respect to some reference solution, which is typ-
ically the Null solution. For arbitrary solution A we will
calculate the CoD (as a percent) with respect to reference
solution R as

CoD(R) = 100
{

1 − MSD(A)
MSD(R)

}
. (6)

In what follows MSD will refer to the OMB MSD and
RMSD will refer to the OMB RMSD.

4.1 Data acquisition

Data were acquired for 10 days (40 six-hour DA cycles).
Each cycle has about 4,000 collocations. The first six-hour
period is centred at 0000 UTC on 21 April 2020 and
the last is centred at 1800 UTC on 30 April 2020. The
period chosen occurs after the large telescope mirror
(referred to as M1) bias correction was applied opera-
tionally. The Aeolus wind observations were obtained
from ESA as Level-2B (L2B) Earth Explorer (EE) format
files. These data are all “Baseline B10” products which
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means they are retrieved using the so-called redundant
flight model (FM-B) laser. Aeolus observations sample
the atmosphere horizontally over the whole globe except
for small cut-outs near the poles and vertically from the
boundary layer to the lower stratosphere. The highest con-
centration of Aeolus observations is in the upper tropo-
sphere.

The AMV observations are those available for use
operationally by NOAA’s global DA system. After quality
control and thinning (typically to 200 km resolution) only
a small percentage of the available AMVs are actually
assimilated in the DA. (Details are summarized at https://
nwp-saf.eumetsat.int/site/monitoring/winds-quality-
evaluation/amv/amv-use-in-nwp/use-of-amvs-in-the-
ncep-model/; accessed 8 November 2021.) We accessed
the AMVs in the so-called “SATWND BUFR file” format1.
The dataset includes operational AMVs from both geosta-
tionary and polar-orbiting satellites derived from cloudy
scenes in the infrared, visible, and water vapour channels
or clear scenes in the water vapour channel. The geosta-
tionary satellites are GOES-16, GOES-17, METEOSAT-8,
METEOSAT-11, Himawari-8, INSAT-3D, and INSAT-3DR.
The polar-orbiting satellites are NOAA-15, -18, -19, and
-20, Suomi National Polar-orbiting Partnership (S-NPP),
MetOp-A and -B, Aqua and Terra. All the AMVs are
from imagers. For the geostationary satellites, these are
the Advanced Baseline Imager (ABI) onboard the GOES
satellites, the Spinning Enhanced Visible and Infrared
Imager (SEVIRI) onboard the METEOSAT satellites, the
Advanced Himawari Imager (AHI) onboard Himawari-8,
and the INSAT Imager onboard the INSAT satellites. The
AMVs from the polar satellites are from the Advanced
Very High Resolution Radiometer (AVHRR) instrument
onboard the NOAA and EUMETSAT satellites, except
that the Visible and Infrared Imaging Radiometer Suite
(VIIRS) is onboard NOAA-20 and S-NPP. The Moder-
ate Resolution Imaging Spectroradiometer (MODIS) is
onboard the NASA satellites – Aqua and Terra. More
details are provided by Lukens et al. (2021). All data were
converted to Network Common Data Form (NetCDF).

Aeolus estimates HLOSV from both Rayleigh (or
molecular) scattering and Mie (or aerosol) scattering. As
noted in the Introduction, only Aeolus Rayleigh clear-sky
winds were collected because (a) ESA does not recom-
mend the use of Rayleigh cloudy winds at this time, and
(b) Aeolus Mie winds are generally localized to heights
in the boundary layer and near cloud tops and hence
do not provide adequate profiles of winds, which are
needed in the FTC observation operator. However, this

1BUFR = Binary Universal Form for the Representation of
meteorological data; SATWND = Satellite Wind

choice comes with some limitations and requires some
interpretation of the results. Rayleigh clear winds collo-
cated with AMVs will either be above clouds or from
nearby clear locations. In the first case, there might be
missing HLOSV values below the AMV (Section 4.4). In
the second case, collocation errors are expected to be
larger both because the collocation distance will tend to
be larger and because the nearby clear column may not
be representative of the air containing the cloud feature
tracked.

4.2 Data collocation

For each AMV, the Aeolus dataset is searched for colloca-
tions. First, all Aeolus observations are found that satisfy
the collocation criteria for that AMV. Following Santek
et al. (2021a); Santek et al. (2021b), the collocation criteria
are a time difference of 60 min or less, a log10 pressure dif-
ference of 0.04 or less, and a great circle distance of 100 km
or less. In practice, AMV data in each 6 hr DA cycle were
compared to Aeolus data in that cycle as well as neigh-
bouring cycles so that all potential collocations including
those that cross cycle boundaries are found. Second, the
Aeolus observations closest in terms of great circle distance
to the AMV observation are selected. Third, the Aeolus
observation from that selection that is closest to the AMV
in the vertical is chosen as the collocated Aeolus obser-
vation. All Aeolus observations with the same latitude,
longitude and time as the collocated Aeolus observation
are collected and sorted to form the collocated Aeolus pro-
file. During the collocation process, the AMV HLOSV is
obtained by projecting the AMV on the collocated Aeo-
lus HLOS. A total of 162,055 collocations was found in the
ten-day period.

As points of reference, Lukens et al. (2021) compile
AMV statistics from studies comparing AMVs to radioson-
des and find a range from roughly 4.5 to 9.0 m⋅s−1 for the
vector RMS error. Assuming a middle value and convert-
ing to a component standard deviation yeilds 4.75 m⋅s−1.
Meanwhile, Rennie et al. (2021) estimate the random error
standard deviation for tropospheric Aeolus HLOS winds at
5 m⋅s−1 for the period of this study (their Figure 2). For the
independent sample the closest in ln(p) collocation RMSD
is 7.96 m⋅s−1, and the Null solution, which only interpo-
lates the Aeolus profile to the reported height of the AMV,
has an RMSD of 7.35 m⋅s−1. Since collocation differences
combine the two observation errors as well as errors due
to the collocation itself, i.e., due to differences in location
and scale in an RMS sense, then these estimates are con-
sistent with RMS collocation differences on the the order
of 4 m⋅s−1 or, if the height difference is accounted for by
interpolating the Aeolus profile, 2.5 m⋅s−1.

https://nwp-saf.eumetsat.int/site/monitoring/winds-quality-evaluation/amv/amv-use-in-nwp/use-of-amvs-in-the-ncep-model/
https://nwp-saf.eumetsat.int/site/monitoring/winds-quality-evaluation/amv/amv-use-in-nwp/use-of-amvs-in-the-ncep-model/
https://nwp-saf.eumetsat.int/site/monitoring/winds-quality-evaluation/amv/amv-use-in-nwp/use-of-amvs-in-the-ncep-model/
https://nwp-saf.eumetsat.int/site/monitoring/winds-quality-evaluation/amv/amv-use-in-nwp/use-of-amvs-in-the-ncep-model/
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4.3 Quality control

Several QC tests are applied to each collocation. Colloca-
tions passing all the tests are retained for further analysis
with no additional QC done during the analysis. The QC
tests are as follows:

1. Missing value QC eliminates collocations where there
are missing values for any of the necessary AMV vari-
ables. A very small number (n = 42) of collocations
failed the missing value QC test.

2. Gross check QC trims 5% of the collocations with the
largest absolute OMB differences between collocated
HLOS winds.

3. Aeolus QC eliminates collocations with Aeolus observa-
tions that fail the ESA suggested QC for Rayleigh clear
winds. This includes mid-layer heights less than 2 km;
pressures greater than 800 hPa; estimated errors greater
than 12 m⋅s−1; and accumulation lengths less than
60 km. These criteria are consistent with the advice
of Rennie et al. (2021). 24% of collocations failed the
Aeolus QC test.

4. AMV QC eliminates collocations with AMVs having
a quality indicator (QI, %) less than 60%. The QI is
a forecast independent metric computed by the data
providers (Santek et al., 2019a). This is not a stringent
test. The cut-off of 60% is considered a minimal QC; an
80% cut-off is ideal (personal communication, Illiana
Genkova (EMC), November 2020). Collocations with
AMVs that do not have a QI assigned (3.4% of the sam-
ple) also fail this test. In all 19.4% of collocations failed
the AMV QC test.

There are 99,726 collocations passing all the QC tests
for a yield of 61.5%.

4.4 Data pre-processing

To apply the method in Section 2, we first interpolate each
Aeolus profile to a regular grid in height referenced to the
level of the collocated AMV. The Aeolus QC (described
above) that was applied when selecting the collocations
is also applied to each Aeolus wind in the collocated pro-
files. We will refer to these two QC steps as collocation
QC and profile QC, respectively. The profile QC elimi-
nates approximately 10.5% of all the Aeolus observations.
This is a much smaller percentage than the 23.5% for the
subset of Aeolus winds collocated with AMVs. In other
words, a much greater percentage of Aeolus winds fail the
QC in the generally cloudy conditions at and below the
elevation of the AMVs. Experiments without the profile
QC (not shown) produced larger RMSDs, but only by a

few percent (5.66 versus 5.57 m⋅s−1 for the standard lm1
model).

From the AMV–Aeolus collocation, we know the p and
HLOSV for the AMV and the profiles of p, Z, and HLOSV
for Aeolus, where p is pressure (hPa) and Z is geomet-
ric height above mean sea level (m). (Aeolus L1B data
are relative to the WGS84 ellipsoid, but L2B processing
implements the conversion to the EGM96 geoid (Tan et al.,
2008).) Therefore, interpolation of the Aeolus data to the
regular grid centred on the AMV begins by first finding
ZAMV, the height for the AMV, by interpolating Aeolus Z
in log p to the AMV reported pressure. The regular grid is
then defined by

Zk = zk + ZAMV = k𝛿z + ZAMV (7)

for zk in the range−5 to+8 km and for 𝛿z = 0.5 km. Finally,
the Aeolus HLOSV are interpolated linearly in Z to this
grid. If a value of Zk is outside the vertical range of the Aeo-
lus profile, then the corresponding Aeolus interpolated
HLOSV value (Vk) is set by constant extrapolation.

Constant extrapolation is less than ideal. Specifically,
the number of missing data (equivalently, the number of
extrapolated data) is much greater below the AMV because
the Aeolus Rayleigh mode is obstructed by cloud. We
investigated the alternative of calculating the weighted
average of the background wind (Equation (3)) by averag-
ing over just the levels with non-missing values. In exper-
iments without profile QC, the results of the two methods
are essentially the same because there are few missing/ex-
trapolated data in this case. With profile QC, the method
without extrapolation gives a slight improvement over
constant extrapolation (MSD of 5.56 versus 5.57 m⋅s−1).
However, results are shown below for the constant extrap-
olation method because it permits solving the lmn model
and assigning a shear value to each collocation.

Figure 1 illustrates these findings. In the figure we plot
the RMSD between the AMVs and the Aeolus interpolated
profiles and the percent of missing/extrapolated data from
5 km below (thick lines) to 5 km above (thin lines) the
AMV for the QC sample. First, and most surprisingly, the
RMSD reaches a minimum 0.5 km above the AMV. Sec-
ond, compared to differences above the AMV, differences
below the AMV by a similar vertical distance are larger
by 0.5–2.0 m⋅s−1 and increase with vertical distance. Third,
constant extrapolation increases the RMSD by as much as
0.4 m⋅s−1, which occurs for a vertical distance of −1.5 km.
Fourth, the percentage of data missing/extrapolated above
the AMV is tiny, only reaching 1.5% at 5 km. The percent-
age of data missing/extrapolated below the AMV ranges
from 10% to 50%. This percentage is substantially reduced,
but still large without the profile QC. Given the RMSD pro-
files in Figure 1a, we can anticipate that the optimal values
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F I G U R E 1 Statistics of the Aeolus profiles plotted versus the vertical distance from the AMV. Thin lines are plotted for distances above
the AMV and thick lines for distances below the AMV. (a) shows the RMSD (m⋅s−1) between the AMV and the interpolated Aeolus profiles
for four cases – with and without extrapolation and with and without the profile QC. (b) shows the percent missing (or extrapolated) for two
cases – with and without the profile QC [Colour figure can be viewed at wileyonlinelibrary.com]

of h will be positive, both because the minimum RMSD
occurs at +0.5 km and because RMSDs tend to be larger
below the AMV. Further, the third point is consistent with
the slight improvement of averaging over non-missing val-
ues compared to constant extrapolation. Moreover, it is
possible that larger RMSD values below the cloud level sig-
nify that the Rayleigh clear Aeolus winds below nearby
AMVs are less clear or less representative of the wind at
the AMV location than those higher in the atmosphere. If
this is the case, then the fact that the RMSD reaches a min-
imum 0.5 km above the AMV might not be due to an error
in height assignment, but might instead simply be due to
the fact that the Aeolus profile interpolated to the AMV
height is a combination of Aeolus observations just above
and just below the AMV height, and the observation below
the AMV height may be contaminated by cloud.

Figure 1a has implications for the optimal averaging
layer, since roughly speaking, the optimal averaging layer

will minimize 1∕n times the average of the MSD between
the AMV and the n individual Aeolus winds averaged
over.2 These MSDs are the squares of the values plotted
in Figure 1a. Thus, averaging over more and more levels
surrounding the AMV level is beneficial due to the 1∕n
effect, until the MSD become too large. This is illuminat-
ing because it explains the balance between the following
factors:

(a) the more Aeolus data are averaged the better,
because this reduces random errors;

2Consider a boxcar average – Equation (A2) with w′
k = 1∕n. The MSD

between the AMV, Vo and this boxcar average is equal to average of all
the correlations of the differences between Vo and Vk. If we ignore
off-diagonal terms, this MSD is just 1∕n times the average of the MSD
between Vo and Vk. While this is useful heuristically, the off-diagonal
terms should be included in any calculation.

http://wileyonlinelibrary.com
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(b) averaging over a layer that is more representative of
what is tracked in determining the AMV is benefi-
cial, and

(c) averaging of a layer that is too thick reduces random
error, but ultimately is no longer representative of
the AMV.

4.5 Solutions for different models

The solution for Δz and h, and 𝛿V and either 𝛾 or wk
is obtained in a two-step process. First, 𝛿V and either 𝛾

or wk are determined by the standard linear model (i.e.,
regression analysis) for each cell in a grid of Δz and h
described in the Appendix. Second, the grid is searched
for the global minimum of MSD. For this search to be
meaningful, the sample in each grid cell must be the same.
This requires a procedure for handling missing data in
the Aeolus profiles. Results presented here are based on
constant extrapolation but, as indicated in Section 4.4, the
alternative of averaging over non-missing data in the Aeo-
lus profiles yeilds similar results. Figure 2 shows the Δz
and h grid for the case of the standard (lm1) model for
the training sample (n = 66,715). The minimum occurs for
Δz = 4.5 km and h = 0.5 km (circled). Here MSD is nor-
malized by MSD for the OLS solution, i.e., for Δz = 0.5 km
and h = 0 km, which are indicated by the thick horizon-
tal and vertical lines. The quantity plotted is 100 times the
normalized MSD and is therefore equal to 100–CoD(OLS).
This is the percent of the total sum of squares of the
OLS solution remaining after the lm1 fit. At the min-
imum the plotted value of 64 therefore corresponds to
CoD(OLS)=36%. (For the training sample, the lm1 and
OLS models remove the bias, so the MSD is equal to the
variance of OMB.) Note that the cost function displayed

F I G U R E 2 The cost function for the global solution as a
function of Δz and h. The values plotted are 100 times MSD divided
by the MSD of the OLS solution (i.e., the solution for Δz = 0.5 km
and h = 0 km) [Colour figure can be viewed at
wileyonlinelibrary.com]

in Figure 2 has a reasonably well-defined minimum, but
there are three additional grid cells near the minimum
where the normalized MSD is also 64. As a result, sim-
ilarly good solutions are available for values of Δz and
h one or two grid cells away (i.e., for differences of 0.5
or 1 km.)

The solution parameters and key statistics for this
model and the other models listed in Table 1 are given
in Table 2. The solution parameters are Δz, h, 𝛿V and 𝛾 .
The statistics are the RMSD, mean OMB, CoD(OLS), and
CoD(Null), all for the independent sample (n = 33,011).

T A B L E 2 Solution parameters and key statistics for the models listed in Table 1

𝚫z h 𝜹V RMSD MOMB CoD CoD
Model (km) (km) 𝜸 (m⋅s−1) (m⋅s−1) (m⋅s−1) (OLS) (Null)

lmn 7.0 0.75 0.93 −0.04 5.52 0.05 37.1 43.6

lm1 4.5 0.50 0.93 −0.03 5.57 0.04 35.9 42.5

lm1+0 4.5 0.50 0.93 0 5.57 0.01 35.9 42.5

lm0 5.0 0.25 1.00 0.01 5.75 0.03 31.7 38.8

AHA 4.5 0 1.00 0 5.79 0.11 30.7 37.9

OLS 0.5 0 0.89 0.09 6.96 0.05 0 10.4

LSO 0.5 0 0.89 0 6.96 0.14 0 10.3

SBC 0.5 0 1.00 0.03 7.35 0.05 −11.6 0

Null 0.5 0 1.00 0 7.35 0.08 −11.6 0

Note: MOMB is mean OMB. Statistics are for the independent sample (n = 33,011).

http://wileyonlinelibrary.com
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The different models in Table 1 are examined to inves-
tigate which free parameters are necessary. As mentioned
earlier, winds could be increased by increasing 𝛾 , increas-
ing 𝛿V, or increasing the heights of the layers averaged
over. First, note that the models are ordered from the best
to the worst in terms of CoD or MSD. For the OLS and
LSO models, which do not include averaging over a layer,
including the multiplicative parameter 𝛾 with a value of
about 0.9 reduces the MSD by 10% relative to the Null solu-
tion (6.96 m⋅s−1 RMSE compared to 7.35 m⋅s−1 RMSE).
Note that for all the cases in which 𝛾 is a free parameter,
both cases including and not including an averaging layer,
the optimal value of 𝛾 is approximately 0.9. Averaging over
a layer (4.5 km in most cases) significantly improves the
fit, even in the one-parameter ad hoc averaging (AHA)
model. In part this may be due to the AMV being repre-
sentative of a layer, but averaging the random errors of the
Aeolus profile winds is certainly playing a part in improv-
ing the comparison. For the series of models including
layer averaging, Table 2 shows that increasing complexity
does provide better data fits. For the lmn model the wk are
optimized level by level (Figure 3). (The wk for the other
models are simply equal to 𝛾 divided by the number of
levels averaged over (n = Δz∕𝛿z), and are not reported.)
Interestingly, the shape of the weights in Figure 3 is close
to a triangle. However, this solution is not well constrained
and for a wide range of Δz and h, the optimum values of
wk and 𝛾 give nearly the same MSD.

4.6 Solutions for different
stratifications

As noted in the Introduction, AMV errors may depend on
how they were produced, on location and on local condi-
tions (e.g., Velden et al., 1997). Posselt et al. (2019) recently
showed that errors of water vapour AMVs depend on
wind speed as well as water vapour content and gradient.
Accounting for related variables in the FTC observation
operator might improve the OMB statistics. To determine
which variables might be helpful in this regard, solutions
for different stratifications (subsetting) of the data are
presented here. In these calculations each subset is inde-
pendently optimized. Since the samples used in the calcu-
lation are smaller than before, the lm1+0 model is used
here. This model uses one less parameter than the stan-
dard model, but reduces MSD to about the same degree.
Following the terminology used in statistical modelling, a
variable used to create sample subsets is called a factor.
A factor takes on a small number of values called factor
levels. A factor may be a categorical variable or a continu-
ous variable that has been divided into a small number of
intervals.
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F I G U R E 3 The lmn weights, wk. The sum of the weights is
0.93 and is equal to 𝛾 [Colour figure can be viewed at
wileyonlinelibrary.com]

The different factors and levels are defined as:

1. Factor Method describes the method used to generate
the AMV and has levels IR, Vis, WV, and Clear, indi-
cating that IR, visible, cloudy WV or clear WV imagery
was used.

2. Factor Height has levels High, Mid, and Low and is
defined by breakpoints 450 and 750 hPa applied to AMV
pressure.

3. Factor Region has levels Southern Hemisphere Extra-
tropics (SHX), Tropics, and Northern Hemisphere
Extratropics (NHX) and is defined by breakpoints −30
and +30 degrees applied to AMV latitude.

4. Factor Speed has levels Slow, Medium, and Fast and is
defined by breakpoints 10 and 20 m⋅s−1 applied to the
AMV speed.

5. Factor Shear has levels corresponding to Very negative,
Negative, Neutral, Positive, and Very positive shear and
is defined by breakpoints −3, −1, +1, +3 m⋅s−1⋅km−1

applied to Aeolus HLOS wind shear. This is calculated
as the difference between the Aeolus HLOS wind 2 km

http://wileyonlinelibrary.com
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T A B L E 3 Solution parameters and key statistics for the different factors summarized over the factor levels

𝚫z h 𝜹V RMSD MOMB CoD CoD

Factor (km) (km) 𝜸 (m⋅s−1) (m⋅s−1) (m⋅s−1) (LSO) (Null)

Method 4.32 0.58 0.92 0 5.49 –0.02 37.1 44.2

Height 4.67 0.63 0.90 0 5.50 –0.01 36.8 44.0

Region 4.23 0.50 0.93 0 5.56 0.01 36.1 42.8

Speed 4.09 0.50 0.79 0 5.15 0.03 33.8 51.0

Shear 4.03 0.56 0.93 0 5.54 0.02 36.6 43.2

Sanity 4.25 0.50 0.93 0 5.58 0.01 35.9 42.5

All 4.50 0.50 0.93 0 5.57 0.01 35.9 42.5

Note: The summary is a weighted average, except that RMSD is calculated from the weighted average of MSD. MOMB is mean OMB.
Statistics are for the independent sample (n = 33,011).

above and 2 km below the AMV height, divided by
4 km. The extrapolated Aeolus winds are used to calcu-
late shear.

6. Factor Sanity is used to estimate the uncertainty of the
solutions. The collocations are randomly assigned to
one of the four levels (First, Second, Third, or Fourth).

7. Factor All is used for the global solution (i.e., the case of
no subsets). All collocations are assigned to the single
level (also named “All”). The All solution is thus the
lm1+0 solution of Section 4.5.

Optimized solutions were obtained for each factor
level. Summary solutions and statistics for all factors are
given in Table 3. For each factor, the summary parame-
ters and statistics are the weighted averages over the factor
levels of the solution parameters and statistics, except that
the summary RMSD value is calculated from the weighted
average of the MSD values. (The weights are the number
of collocations for each factor level.) For more granular-
ity, level solutions and statistics for all factors and levels
are given in Table 4. Note that in both tables the first CoD
is with respect to the LSO solution, which, like the lm1+0
model, has no constant term.

Considering first Table 3, the one factor that stands out
is Speed. Factor Speed reduces the RMSD to 5.15 m⋅s−1

and increases the CoD to 51%. Factor Speed’s solution is
also different in having 𝛾 = 0.79, whereas all the other
values of 𝛾 are in the range 0.9–0.93. Otherwise all average
parameters are similar, with Δz ranging from 4 to 4.7 km
and h from 0.5 to 0.63. From the point of view of mini-
mizing MSD, except for Speed, none of the other factors
seem worth the extra degrees of freedom. However, there
are some interesting features when we turn to the factor
level solutions and statistics, all of which are presented in
Table 4.

In Table 4 we see that for different factor levels the
solutions differ considerably for factors Method, Height,

Speed, and Shear, but not for factors Region and San-
ity. For Region and Sanity, it is true that one factor level
(SHX and First, respectively) has a different value of Δz
(3.5 km). However, this is not significant recalling that in
the discussion of Figure 2 several grid cells (including the
two in question here – Δz = 4.5 km with h = 0.5 km and
Δz = 3.5 km with h = 0.5 km) had nearly identical MSD
values.

The next three figures show the level solutions for fac-
tors Method, Speed, and Shear, factors for which there
are interesting differences between factor levels. As men-
tioned, factor Speed has the best performance with a
CoD(Null) of 51%, compared to 42.5% for the factor All
solution. Factor Method with a CoD of 44.2% and factor
Shear with a CoD of 43.2% perform only slightly better
than factor All.

In Figure 4 for factor Method there are notable differ-
ences between IR and visible CTW AMVs and the WV clear
and cloudy AMVs both in terms of solution and fit. The
WV AMVs, especially in the Clear case, have a wider opti-
mal averaging layer which is more nearly centred on the
reported AMV height. Potential reasons for this, given in
Section 2, include the fact that the WV channels average
over a considerable depth of the atmosphere character-
ized by their weighting functions, while the IR and Visible
channels are sensitive to the actual cloud tops. The WV
AMVs have distinctly larger RMSD and smaller CoD val-
ues. Both of these factors indicate that it is more difficult
for the FTC observation operator to fit the WV AMVs.

For factor Speed, there is a very significant increase
in RMSD from Slow to Medium to Fast AMV winds. In
situations with higher wind speeds, we expect greater vari-
ation both spatially and temporally, resulting in larger
collocation differences. In terms of the FTC parameters
graphically presented in Figure 5, 𝛾 ranges from near 0.5
to near 1.0 with increasing AMV wind speed, thus greatly
reducing the Aeolus layer mean HLOS wind estimate
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T A B L E 4 Solution parameters and key statistics for the lm1+0 model for each level of each factor

𝚫z h 𝜹V RMSD MOMB CoD CoD

Factor Level n (km) (km) 𝜸 (m⋅s−1) (m⋅s−1) (m⋅s−1) (LSO) (Null)

Method IR 15713 4.0 0.75 0.89 0 5.20 0.07 41.7 50.0

Method Vis 633 3.0 0.75 0.85 0 5.05 0.43 40.5 54.7

Method WV 10916 4.5 0.50 0.97 0 5.62 −0.24 39.6 42.8

Method Clear 5749 5.0 0.25 0.89 0 6.05 0.14 18.6 29.4

Height High 23310 4.5 0.50 0.94 0 5.64 −0.17 38.1 43.9

Height Mid 8046 5.5 1.00 0.82 0 5.27 0.24 32.1 41.9

Height Low 1655 3.0 0.75 0.77 0 4.65 0.91 36.4 56.1

Region SHX 8997 3.5 0.50 0.92 0 5.92 0.02 33.4 40.6

Region Tropics 14676 4.5 0.50 0.92 0 5.43 −0.03 34.0 40.9

Region NHX 9338 4.5 0.50 0.94 0 5.41 0.08 41.7 47.7

Speed Slow 8950 4.5 0.50 0.52 0 3.76 0.22 20.8 70.8

Speed Medium 10595 4.5 0.50 0.80 0 4.89 0.06 32.2 52.4

Speed Fast 13466 3.5 0.50 0.96 0 6.06 −0.12 37.1 39.7

Shear [−Inf,−3] 4825 3.5 0.50 0.91 0 6.52 0.15 34.0 39.9

Shear [−3,−1] 6271 4.5 0.50 0.94 0 5.06 0.09 37.4 45.5

Shear [−1,+1] 8562 4.0 0.75 0.94 0 4.67 0.03 39.3 47.0

Shear [+1,+3] 7103 4.5 0.50 0.93 0 5.13 0.02 39.9 46.3

Shear [+3,+Inf] 6250 3.5 0.50 0.91 0 6.62 −0.20 33.5 38.8

Sanity First 8120 3.5 0.50 0.92 0 5.54 0.08 35.8 42.3

Sanity Second 8374 4.5 0.50 0.93 0 5.62 −0.02 34.7 41.3

Sanity Third 8259 4.5 0.50 0.93 0 5.62 −0.02 36.3 43.0

Sanity Fourth 8258 4.5 0.50 0.93 0 5.51 0.01 36.6 43.3

All All 33011 4.5 0.50 0.93 0 5.57 0.01 35.9 42.5

Note: MOMB is mean OMB. Statistics are for the independent sample.

when AMV wind speed is low. This finding, as well as the
fact that factor Speed stands out in improving the overall
fit, is expected since AMV speed is correlated with AMV
HLOS wind. Except for Δz = 3.5 km for the Fast speed
level, the averaging layers are the same for all three factors
and the same as that for factor All (i.e., Δz = 4.5 km and
h = 0.5 km). Thus, it is the variation of 𝛾 which provides
the improved fit for factor Speed.

For factor Shear, there are several interesting features.
First, the RMSD increases with shear magnitude and the
CoD decreases with shear magnitude. Second, Δz is small-
est (3.5 km) for the most extreme shears (Figure 6). Since
averaging over the Aeolus profile tends to reduce the
random observation errors, the optimal solutions favour
larger averaging layers. For these two features, note that in
a strong shear environment, winds far from the midpoint
of the averaging layer are very different from the other lay-
ers, opposing the tendency for large averaging layers and

increasing the RMSD. In contrast, in weak shear, adding
an extra level has little impact on the layer mean wind but
does decrease its random error.

5 SUMMARY AND CONCLUDING
REMARKS

In this study we propose a feature track correction (FTC)
observation operator for atmospheric motion vectors
(AMVs). We discuss the potential use of the FTC
observation operator in a variational data assimilation
(DA) system and point out that variational FTC (VarFTC)
parallels in several ways the variational bias correction
(VarBC) used for assimilating radiance observations. The
objective of the FTC observation operator is to account
for differences between AMVs and the true wind which
might be due to AMV height assignment errors, AMVs
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F I G U R E 4 The level solutions for factor Method. For visualization, the shaded area shows wk multiplied by n, the number of levels
plotted as a function of relative height (z) given by the left axis, the dashed line is plotted at 𝛾 , which is equal to the sum of the wk, and the
thick and thin solid vertical lines indicate 0 and 1. The value of 𝛿V is plotted as “X” according to the scale on the right axis [Colour figure can
be viewed at wileyonlinelibrary.com]

being representative of some layer of the atmosphere and
not a single level, and AMVs being too strong or too weak
compared to the true wind.

The standard version of FTC has four degrees of free-
dom corresponding to wind speed multiplicative and addi-
tive corrections (𝛾 and 𝛿V), an estimate of the depth of
the layer that contributes to the AMV (Δz), and a vertical
height assignment correction (h). Since the effect of the
FTC observation operator is to add a bias correction to a
weighted average of the profile of background winds, the
more general formulation is in terms of a profile of weights
(wk) and 𝛿V. These formulation may have more degrees
of freedom than necessary and some restrictions may be
warranted. For example, and as noted in Section 2, there
may be multiple ways of correcting a slow bias. However,
in the present case, experiments (described in Section 4.5)
with a variety of formulations indicate that more degrees of
freedom increasingly improve the fit for the independent
sample.

The FTC observation operator is tested in the context
of a collocation study between AMVs projected onto the
collocated Aeolus horizontal line-of-sight (HLOS) and the
Aeolus HLOS wind profiles. This is meant to be a prototype
for an implementation in a variational data assimilation
system, and here the Aeolus profiles act as the background

in the FTC observation operator. However, in the collo-
cation study the FTC observation operator must account
for errors in both the AMVs and the Aeolus observations.
This complicates the interpretation of the results because
of the Aeolus observation error characteristics. First, the
Aeolus data used have had the M1 mirror temperature
bias correction applied, but still have large random errors
(of order 5 m⋅s−1 RMSE). These errors are thought to be
due to instrument noise and therefore are uncorrelated
in the vertical. This noise can be reduced by averaging
the Aeolus profile in the vertical and as a result the FTC
solutions favour thick averaging layers (typically 4.5 km
thick) to reduce the misfit between AMVs and FTC obser-
vation operator estimates. Second, except for the WV clear
AMVs, the collocations are in cloudy areas, and in such
cases it appears the Aeolus profiles below cloud top have
larger errors. We even find that the RMSD between AMVs
and Aeolus profiles is slightly smaller 0.5 km above the
AMV height (Section 4.4). As a result the FTC solutions
favour averaging layers centred above the AMV height
(typically by 0.5 km). These factors are also consistent with
results for subsets based on the Shear and Method factors
(Section 4.6).

Collocation study results were obtained for ten days of
data using modest (i.e., not stringent) quality control (QC).

http://wileyonlinelibrary.com
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F I G U R E 5 As Figure 4, but for factor Speed [Colour figure can be viewed at wileyonlinelibrary.com]
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The solution for the standard model has Δz = 4.5 km,
h = 0.5 km, 𝛾 = 0.93, and 𝛿V negligible. As explained
above, the fact that the averaging layer is thick and dis-
placed upwards can be explained at least in part in terms
of the error characteristics of the Aeolus profiles. The
AHA model was used to quantify this effect. We found
in Section 4.5 that the AHA model provides reduction

of mean square difference (MSD) of 37.9% compared to
the value of 42.5% for the lm1 model, demonstrating the
value of both vertically averaging and the FTC observation
operator. The optimal reduction in Aeolus wind by a
factor of approximately 0.9 in FTC solutions with and
without layer averaging suggests that the AMVs are rel-
atively slow compared to the Aeolus winds. The overall
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RMS collocation difference for the standard model for the
independent sample is 5.57 m⋅s−1 with negligible mean.
For comparison the RMSD of the corresponding closest in
ln(p) collocation is 7.96 m⋅s−1, and the null solution, which
only interpolates the Aeolus profile to the reported height
of the AMV, has an RMSD of 7.35 m⋅s−1. These values cor-
respond to reduction in MSD of 51 and 43% due to the FTC
observation operator in comparison to the closest in ln(p)
and interpolated in Z collocations, respectively.

In the present case the findings relate more to the
errors of the Aeolus profiles than the AMVs. However,
these preliminary tests do demonstrate the potential for
the FTC observation operator to

• Reduce the misfit of AMV collocations (including triple
collocation) with profile wind data;

• Characterize AMVs or the profile wind data used; for
example, summary results for the HLOS wind show that
AMVs compare best with Aeolus wind profiles averaged
over a 4.5 km layer centred 0.5 km above the reported
AMV height; and

• Improve AMV observation usage within DA systems;
lower estimated error and more realistic representation
of AMVs with VarFTC should result in improved
analyses.

As the next step to implement VarFTC, our ongoing
research uses DA backgrounds in place of Aeolus winds as
input to the FTC observation operator. This approach has
several advantages: it provides a much larger set of data;
it eliminates issues related to the Aeolus Rayleigh-clear
wind error characteristics; and it compares wind vectors
instead of HLOS winds. For example, in the work reported,
other than the factor Speed, the stratifications described
provided little or no benefit. However, in our ongoing
research, thanks to much larger sample sizes, we can strat-
ify first by individual types of AMVs (i.e., by sensor and
method) and still have sufficient sample sizes to consider
other factors. Since local biases are often detected by rou-
tine monitoring of observation-minus-background (O-B)
statistics as reported by the EUMETSAT Satellite Appli-
cation Facility on Numerical Weather Prediction (NWP
SAF) at https://nwp-saf.eumetsat.int/site/monitoring/
winds-quality-evaluation/amv/ (accessed 8 November
2021), this approach is expected to yield benefits.
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APPENDIX.
A DISCRETIZED FTC OBSERVATION OPER-
ATOR AND RELATED LINEAR MODELS

To discretize Equation (2) we first interpolate the back-
ground wind to a regular vertical grid, zk = k𝛿z, relative to
the AMV reported height. That is, the interpolated wind
profile is centred at each observation, but all profiles have
the same grid increment and levels.

The analogue of Equation (1) in terms of the discretized
background wind profile is

V̂ =
∑

wkVk + 𝛿V. (A1)

Here the sum is over a total of n levels, starting at
level m, so k = m to m + n − 1. The correspondence to the
original parameters is given by Δz = n𝛿z and h = {m +
(n − 1)∕2}𝛿z.

The regular vertical grid allows the use of the standard
linear model (i.e., regression analysis) to optimize the wk.
That is, for a given Δz and h Equation (A1) is a linear
model with predictors Vk, coefficients wk, and intercept
𝛿V. The global optimum would then be taken over Δz and

h. We find the global optimum by searching a small m − n
grid with m in [−8,2] and n in [1,14]. We call Equation (1)
the lmn model because it is a linear model with n
predictors.

Equation (A1) can be further simplified by assuming a
fixed shape for the wk that can be specified with a small
number of (to be optimized) parameters, such as a trape-
zoid or truncated Gaussian hill. Now Equation (2) still
holds, but

V =
∑

wkVk

/∑
wk =

∑
w′

kVk, (A2)

where
w′

k = wk∕𝛾 and 𝛾 =
∑

wk. (A3)

Equation (2) is a linear model with the weighted aver-
age background wind as the predictor, coefficient 𝛾 , and
intercept 𝛿V. If we assume the wk correspond to the box-
car shape, then w′

k = 1∕n, wk = 𝛾∕n and V is the layer
average background wind. We call Equation (2) the lm1
model since there is only one predictor. If the intercept
is fixed to be zero, we call this the lm1+0 model. (In the
R programming language, linear models are calculated by
the function lm and “+0” in the formula for the model
indicates a zero constant term.)

A final simplification is to assume 𝛾 = 1 so that

V̂ − V = 𝛿V. (A4)

This is a linear model for the l.h.s. in terms of a constant
intercept 𝛿V. Since there are no predictors, we call this the
lm0 model.

In each of these cases, the global optimum is taken
over Δz and h. The height adjustment can be turned off
by restricting the search to h = 0, and vertical averaging
of the background can be turned off by restricting the
search to a single level, i.e., Δz = 𝛿z. In the case of no
height adjustment and no vertical averaging (h = 0 and
Δz = 𝛿z), the lm1 model reduces to the ordinary least
squares (OLS) model, the lm1+0 model reduces to the
least squares through the origin (LSO) model, and the lm0
model reduces to the simple bias correction (SBC) model.

Note that the discretization of the integration in
Equation (A1) does not actually represent a reduction in
flexibility in fitting the data. This is true since any form of
w(z)would necessarily reduce to the form of Equation (A1)
in which the values of the wk would be determined by
the integration bounds, the weighting function shape and
details of the finite difference integration method.
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